Сологуб Т. В., Романцова М. Г., Кремень Н. В., Александрова Л. М., Аникина О. В., Суханов Д. С., Коваленко А. Л., Петров А. Ю., Ледванов М. Ю., Стукова Н. Ю., Чеснокова Н. П., Бизенкова М. Н., Понукалина Е. В., Невважай Т. А.,
Комплексная терапия при ишемических поражениях мозга, миокарда и других органов направлена на нормализацию кровотока и соответственно усиление оксигенации тканей.
На смену традиционно сложившейся консервативной терапии коронарной патологии с использованием ингибиторов АПФ, β-адреноблокаторов, блокаторов кальциевых каналов, диуретиков, антикоагулянтов, препаратов, препятствующих дислипидемии, гиперлипидемии и т.д., в клиническую практику внедрены радикальные методы лечения - реканализация ветвей коронарных артерий, как путем фармакологического воздействия, так и инвазивного вмешательства [33].
Однако накопленные данные клинических и экспериментальных исследований указывают, что примерно в 30% подобных наблюдений развивается так называемый «синдром реперфузии», обусловленный неспособностью энергетической системы кардиомиоцитов утилизировать поступающий кислород и субстраты синтеза АТФ. При этом на начальных этапах постокклюзионной реперфузии возникают тяжелые осложнения, в частности, в ранее ишемизированном миокарде возможны нарушения ритма, включая фибрилляцию желудочков.
Установлено также развитие «синдрома репефузии» в структурах ранее ишемизированного мозга в постокклюзионный период в виде отека мозга, геморрагий [3, 17, 31, 44].
Несмотря на то, что гипоксия и гипероксия тканей являются диаметрально противоположными процессами, механизмы метаболических расстройств в ранний постокклюзионный период, по существу, во многом аналогичны таковым в условиях спастической ишемии тканей или гипоксии другого генеза и являются их логическим продолжением и усугублением.
В основе реперфузионных осложнений лежит избыточное поступление в условиях реканализации сосудов электролитов - кальция, натрия, а также воды, глюкозы, кислорода и других субстратов к альтерированным или некротизированным тканям, потерявшим способность их метаболизировать в типовых окислительно-восстановительных реакциях, а также в реакциях гликолиза, липолиза, протеолиза [31, 36].
Повышение пассивной проницаемости цитоплазматических, митохондриальных, лизосомальных и др. мембран, а также подавление активного энергозависимого транспорта электролитов, формирующихся в условиях гипоксии, и обеспечивают беспрепятственное проникновение в альтерированные клетки воды и растворимых в ней осмотически активных соединений, поступающих в ишемизированную ткань в условиях ее реперфузии [36, 46].
При избыточном поступлении в клетку натрия, возникает смена частичной деполяризация клеток стойкой деполяризацией и вместо повышения возбудимости и функциональной активности, формируется резкое снижение возбудимости и соответственно функции клеток [51].
Избыточное накопление кальция в тканях в ранний постокклюзионный период приводит к дальнейшей активации мембранных фосфолипаз и дезинтеграции клеточных мембран, а активация под влиянием ионов кальция циклооксигеназы и липооксигеназы обеспечивает избыточное образование простагландинов и лейкотриенов, индуцирующих развитие перифокальной воспалительной реакции [13, 31].
Развитие набухания митохондрий в период гипоксии, обусловленное чрезмерным поступлением в них кальция, калия, фосфатов и воды, приводит к нарушению утилизации субстратов в окислительно-восстановительных реакциях, разобщению процессов окислительного фосфорилирования и дыхания, дефициту АТФ и ограничению всех энергозависимых реакций. В связи с этим усиление притока к ранее ишемизированным клеткам различных субстратов синтеза макроэргов не является фактором срочной восстановительной регенерации субклеточных фракций, в частности, митохондрий [5, 22]: так как проникающие с кровью субстраты не используются в должной мере или вообще не подвергаются метаболизму в аэробных реакциях. В то же время, возможная активация анаэробного метаболизма усугубляет метаболический ацидоз и приводит к дальнейшей дестабилизации биологических мембран [39, 40, 46].
Развитие дезинтеграции, дезорганизации цитоплазматических, лизосомальных, митохондриальных и др. биологических мембран обеспечивается и активацией процессов липопероксидации, усугубляющейся в процессе реперфузии ишемизированных тканей.
При этом источниками свободных радикалов являются процессы липопероксидации, индукцируемые избыточной концентрацией ионов кальция, а также митохондрии с поврежденной внутренней мембранной, обеспечивающей утечку электронов и одноэлектронное восстановление кислорода с образованием супероксиданион - радикала. Свободные радикалы образуются при реперфузии ишемизированной ткани и в процессе взаимопревращений простагландинов, тканевого метаболизма катехоламинов, а также активации ксантиоксидазной системы [17].
Как указывалось выше, избыточное накопление кальция в ишемизированных структурах в период их реперфузии индуцирует активацию прокоагулянтных механизмов в окружающих, неповрежденных тканях, приводит к развитию тромбоза, эмболии сосудов с дальнейшим нарушением васкуляризации, трофики, оксигенации альтерированных структур [4, 26].
Вышеизложенное делает очевидным большую значимость дестабилизации биологических мембран, нарушения электролитного баланса, энергообеспечения, коагуляционного гемостаза в механизмах развития гипоксического некробиоза и осложнений постокклюзионной реперфузии тканей.
Одним из наиболее значимых механизмов повреждения клеток в условиях гипоксии и реперфузии ишемизированных тканей является активация процессов липопероксидации, на подавление которых должна быть направлена комплексная терапия заболеваний, связанных с развитием гипоксии.